Cellular Development as a Hybrid Control System

Ronojoy Ghosh, Claire Tomlin

Department of Aeronautics and Astronautics Stanford University

Bio:Info:Micro Program November 1-2 Washington, DC

Motivating Example: Pattern Formation in Xenopus

• Reference:

- Collier, Monk, Maini, Lewis
- Marnellos, Mjolsness
- Cell biology
 - Xenopus embryo epidermal cell differentiation
 - * Initially homogeneous population
 - * Emergence of ciliated cell
 - Mechanism of cell fate decision
 - * Delta-Notch signaling pathway
 - * Delta and Notch: transmembrane proteins
 - · Delta promotes ciliation
 - · Notch inhibits ciliation

Figure 1: Xenopus embryo labeled by α -tubulin, a marker for ciliated cell precursors

Model Properties

■ Assumptions:

- Intercellular Delta-Notch signaling occurs only through direct contact
- Notch production: triggered only by high Delta concentrations in neighboring cells
- Delta production: triggered only by low Notch concentration in same cell
- Both proteins decay at constant rates

■ Planar cell array

Figure 2: Labeling scheme for cells in two-dimensional arrays

Hybrid System Model

- Each cell: 4-mode hybrid automaton
 - -2 state variables

 v_D : Delta concentration

 v_N : Notch concentration

– Inputs

$$u_D = -v_N$$
$$u_N = \sum_{i=1}^6 v_D^i$$

- Transition relations

 $u_D \geq h_D$: Delta production is on, otherwise off

 $u_N \ge h_N$: Notch production is on, otherwise off

Figure 3: Hybrid system model of individual cell

Hybrid System Model

- N-cell network
 - Compose N hybrid automata
 - Properties of resultant system:
 - * 4^N discrete states
 - * 2N continuous state variables

Figure 4: N-cell network

Simulation

- Normally distributed initial conditions
- Uniform boundary conditions assuming undifferentiated cells on perimeter
- Could also use periodic boundary conditions assuming differentiated cells on perimeter

Simulation Results

- Emergent "salt and pepper" patterns
 - Bistable cell automaton
 - Each cell eventually produces either Notch or Delta, but not both
 - Pattern is sensitive to:
 - st Switching thresholds h_D and h_N
 - * Initial condition distributions

Figure 5: 20×20 cell array showing pattern formation. Red cells are ciliated.

• Interesting result: patterns emerge first at the boundary and then move inwards till steady state

Simulation Results

• Effect of variation in switching thresholds

Figure 6: 6×6 cell array with high h_D

Figure 7: 6×6 cell array with high h_N

• Irregularity: differentiated cells adjacent to each other

Two Cell Hybrid Automaton: Transition Diagram

Figure 8: Transition diagram. Note: (1) transitions in red indicate possible cyclic subgraph leading to a Zeno state, (2) numbers $1, \ldots, 16$ in the figure denote modes q_1, \ldots, q_{16} in the hybrid automaton

Research Plan

- Design a "model checker" for biological cell networks
 - the core continuous dynamics are linear (diagonal) systems
 - the discrete dynamics are approximated (bounded)
 by piecewise linear switches
 - complex feedback loop structure
- Hybrid systems analysis allows:
 - continuous dynamics (majority of computation time)
 to be "abstracted" in a mathematically correct way
 - a deeper understanding of cell network behavior
 - efficient simulation (to predict biological behavior)
 - possible design of control mechanisms